SCIoI Alumni

Danny Driess

Doctoral Researcher

Machine Learning

TU Berlin

   

Photo: SCIoI

← Alumni Overview

Danny Driess

Danny Driess

Photo: SCIoI

Danny Driess worked as a doctoral researcher in Marc Toussaint’s team. His PhD focused on learning in Task and Motion Planning with a special focus on connecting perception and planning for sequential manipulation tasks through machine learning. Within SCIoI, he investigated novel ways to couple sequential manipulation planning with reactive policies for execution. He received his Bachelor of Science (with distinction) in Simulation Technology in 2016 and his Master of Science (with distinction) in Simulation Technology in 2019, both from the University of Stuttgart.


Projects

Danny Driess is member of Project 39.


Driess, D., Xia, F., Sajjadi, M. S. M., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A., Tompson, J., Vuong, Q., Yu, T., Huang, W., Chebotar, Y., Sermanet, P., Duckworth, D., Levine, S., Vanhoucke, V., Hausman, K., Toussaint, M., Greff, K., … Florence, P. (2023). PaLM-E: An Embodied Multimodal Language Model. ICML 2023. https://doi.org/10.48550/arXiv.2303.03378
Ha, J.-S., Driess, D., & Toussaint, M. (2022). Deep Visual Constraints: Neural Implicit Models for Manipulation Planning from Visual Input. IEEE Robotics and Automation Letters. https://doi.org/10.1109/LRA.2022.3194955
Toussaint, M., Harris, J., Ha, J.-S., Driess, D., & Hönig, W. (2022). Sequence-of-Constraints MPC: Reactive Timing-Optimal Control of Sequential Manipulation. IROS 2022. https://doi.org/10.1109/IROS47612.2022.9982236
Ortiz-Haro, J., Ha, J.-S., Driess, D., & Toussaint, M. (2022). Structured deep generative models for sampling on constraint manifolds in sequential manipulation. CoRL 2021. https://argmin.lis.tu-berlin.de/papers/21-ortiz-CORL.pdf
Harris, J., Driess, D., & Toussaint, M. (2022). FC3: Feasibility-Based Control Chain Coordination. IROS 2022. https://doi.org/10.1109/IROS47612.2022.9981758
Driess, D., Huang, Z., Li, Y., Tedrake, R., & Toussaint, M. (2022). Learning Multi-Object Dynamics with Compositional Neural Radiance Fields. CoRL 2022. https://doi.org/10.48550/arXiv.2202.11855
Driess, D., Schubert, I., Florence, P., Li, Y., & Toussaint, M. (2022). Reinforcement Learning with Neural Radiance Fields. NeurIPS 2022. https://doi.org/10.48550/arXiv.2206.01634
Driess, D., Ha, J.-S., & Toussaint, M. (2021). Learning to solve sequential physical reasoning problems from a scene image. The International Journal of Robotics Research, 40(12–14), 1435–1466. https://doi.org/10.1177/02783649211056967
Schubert, I., Driess, D., Oguz, O. S., & Toussaint, M. (2021). Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS 2021. https://doi.org/10.48550/arXiv.2111.07908
Driess, D., Ha, J.-S., Toussaint, M., & Tedrake, R. (2021). Learning Models as Functionals of Signed-Distance Fields for Manipulation Planning. CoRL 2021. https://doi.org/10.48550/arXiv.2110.00792

Research

An overview of our scientific work

See our Research Projects